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I. INTRODUCTION

The coupling of long-range electron transfer to proton trans-
port over multiple sites plays a critical role throughout biology.
These coupled processes occur inmany biological systems, such as
photosystem II,1�3 cytochrome c oxidase,4�7 and ribonucleotide
reductase.8�10 The design of biomimetic systems for artificial
photosynthesis and other energy conversion processes requires an
understanding of the coupling of electron transfer to proton
translocation over hydrogen-bonded networks. A variety of model
systems have been designed to study proton-coupled electron
transfer (PCET) reactions that involve the coupling of electron
transfer to a single proton transfer reaction. These types of model
systems have been studied experimentally and theoretically with
both homogeneous and electrochemical approaches.11�34 PCET
processes involving proton transport over multiple proton transfer
sites have been studied less extensively.

Recently Costentin et al. reported the synthesis and charac-
terization of a molecule in which a hydrogen-bond relay is
inserted between the proton donor and acceptor sites in a PCET
system.35 This PCET process involves two proton transfers and
is depicted as System II in Figure 1. In ref 35, cyclic voltammetry
was used to determine the standard rate constant and the kinetic
isotope effect (i.e., the ratio of the standard rate constants for
hydrogen and deuterium). A major advantage of the electro-
chemical approach is that it provides exquisite control over the
energetics by varying the overpotential. The analysis in ref 35

indicates that the electron and two proton transfer reactions occur
by a concerted mechanism without any stable intermediates. For
comparison, the analogous process involving a single proton
transfer, depicted as System I in Figure 1, was also studied. The
standard rate constant was found to be a factor of 16 greater for
System I than for System II, and the kinetic isotope effect (KIE)
was determined to be 1.7 and 2.4 for Systems I and II, respectively.
The results were interpreted using an expression for the standard
rate constant corresponding to adiabatic electron transfer. The
smaller standard rate constant for System II was explained in terms
of a larger inner-sphere reorganization energy, which involves
movements of the heavy atoms. This interpretation provides useful
insight but does not account for the nuclear quantum effects, such
as hydrogen tunneling, and does not explain the experimentally
observed KIE.36

In this paper, we provide an alternative interpretation of these
experimental data within the framework of a vibronically non-
adiabatic rate constant expression that includes the nuclear
quantum effects of the transferring proton(s).31,37�39 To exam-
ine these specific systems, we devised a theoretical approach for
calculating the heterogeneous rate constants of electrochemical
PCET reactions involving proton relays. This treatment requires
the calculation of multidimensional proton vibrational wave
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functions representing the transferring protons,40 the incorpora-
tion of the proton donor�acceptor motions for all proton
transfer reactions, and the inclusion of excited electron�proton
vibronic states. Our calculated KIEs and ratio of standard rate
constants for Systems I and II are in qualitative agreement with
the experimental data. The calculations indicate that the rate
constant is lower for System II than for System I because of the
smaller overlap integral between the ground state reduced and
oxidized proton vibrational wave functions for the double proton
transfer system, resulting in greater contributions from excited
vibronic states with higher free energy barriers. In addition, our
theoretical calculations provide insight into the fundamental
physical principles underlying these types of processes and thus
may assist in the design of more efficient proton relay systems in
artificial photosynthesis, solar cells, and electrochemical fuel cells.
Note that increasing the efficiency of proton relays could be
detrimental in some biological systems involving proton pumps.7,9

In such cases, the objective may be to maintain the appropriate
balance of relative rates among the various steps in the reaction
mechanism.

An outline of this paper is as follows. In Section IIA, we present
the expressions for the anodic and cathodic rate constants. In
Section IIB, we summarize the computational strategy for
calculating the standard rate constants, with particular emphasis
on the methodology for including the proton donor�acceptor
motions and for generating the proton potential energy surfaces
and corresponding proton vibrational wave functions. The
results of our calculations for the experimentally studied systems
as well as an analysis of the underlying physical concepts are
presented in Section III. The conclusions of this study are
presented in Section IV.

II. METHODS

A. Heterogeneous Rate Constant Expressions. The electro-
chemical experiments indicate that the proton transfers concertedly with
the electron transfer between the molecule and the electrode, as
supported by the measurement of a KIE for the standard rate constant
determined with cyclic voltammetry.35,41 Thus, the electrochemical
PCET process of interest is the transfer of an electron between a
solvated solute complex and an electrode, along with the simultaneous
transfer of one or more protons within the solute complex. This process
can be described in terms of nonadiabatic transitions between the
electron�proton vibronic states of the reduced solute complex and
the oxidized solute complex.42,43 Each electron�proton vibronic state is

expressed as the product of a diabatic electronic state representing the
reduced or oxidized solute complex and an associated proton vibrational
state. Expressions for the heterogeneous anodic and cathodic rate
constants have been derived in various limits.42,43

For fixed proton donor�acceptor distance R, the anodic and cathodic
nonadiabatic rate constants are42�44
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where the summations are over vibronic states μ of the reduced solute
complex and vibronic states ν of the oxidized solute complex. Pμ and Pν
are the Boltzmann probabilities for the vibronic states μ and ν,
respectively, f(ε) is the Fermi distribution function for the electronic
states in the electrode, and FM is the density of states at the Fermi level,
which is assumed to be a constant in the vicinity of the Fermi level.
Moreover, Vel is the electronic coupling, β0 is a parameter of magnitude
∼1�3 Å�1 representing the exponential decay of the electronic
coupling with the distance between the molecule and the electrode,
Sμν is the overlap integral between the proton vibrational wave functions
μ and ν, and λ is the reorganization energy. The quantity Δ~Uμν is
defined to be Δ~Uμν = ΔUμν þ kBT ln(QII/QI), where ΔUμν is the
energy difference between vibronic states ν and μ, andQI andQII are the
total partition functions of the reduced and oxidized solute complexes,
respectively, in bulk solution. Note that the term kBT ln(QII/QI) is
required to satisfy detailed balance42 and becomes simply�ΔU00 for the
special case of harmonic proton potentials with identical frequencies
(i.e., the effect of this term for this special case is that the vibronic
energies are calculated relative to their respective ground states). In eqs 1
and 2, the overlap integral Sμν and Δ~Uμν depend on the proton
donor�acceptor distance R. For simplicity, we assume that all other
quantities are independent of R.

Previously we derived rate constant expressions including the effects
of the proton donor�acceptor motion,42,43 but these expressions are
based on the assumption that the overlap integral Sμν decreases
exponentially with the proton donor�acceptor distance R. Unfortu-
nately, for many systems this assumption is not valid, so these expres-
sions are not applicable. In these cases, the effects of the Rmode can be
included by thermally averaging over the proton donor�acceptor
distances:45,46

kaðηÞ ¼
Z

PaðRÞkaðη;RÞdR ð3Þ

kcðηÞ ¼
Z

PcðRÞkcðη;RÞdR ð4Þ

where Pa(R) and Pc(R) are probability distribution functions for the
anodic and cathodic processes, respectively. The harmonic probability
distributions are of the form:

PðRÞ ¼ exp½� keff ðR� RÞ2=2kBT�Z¥
�¥

exp½� keff ðR � RÞ2=2kBT�dR
ð5Þ

Figure 1. Electrochemical PCET reaction for System I, which involves
single proton transfer, and System II, which involves double proton
transfer.
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These distributions depend on an effective force constant keff and
equilibrium proton donor�acceptor distance R, which may be different
for the reduced and oxidized complexes. Anharmonic probability
distributions can be determined numerically by calculating normalized
Boltzmann probabilities obtained from the energies of the relevant
structures. Note that this thermal averaging procedure is based on the
Born�Oppenheimer separation of the proton motion and the slower
proton donor�acceptor motion.

In this paper, the standard rate constant is defined to be the hetero-
geneous rate constant for the overpotential at which the anodic and
cathodic rate constants are equal, assuming equal concentrations of the
reduced and oxidized solute complexes. Our previously derived analytical
expressions satisfy detailed balance, and the anodic and cathodic rate
constants are identical at zero overpotential.42,43 These analytical expres-
sions were derived for models with fixed proton donor�acceptor
distances (i.e., eqs 1 and 2) or for models in which the overlap integrals
are assumed to decrease exponentially with this distance. The more
general expressions in eqs 3 and 4, however, are not necessarily identical
for zero overpotential because the probability distribution functions may
be different for the anodic and cathodic processes, and the overlap
integrals are not assumed to exhibit any specific type of dependence on
the proton donor�acceptor distance or to be the same for the anodic and
cathodic processes. For example, the equilibrium proton donor�acceptor
distances and associated frequencies may differ for the reduced and
oxidized complexes, and the shapes of the proton potentials may change
significantly with the proton donor�acceptor distance. In this case, the
standard rate constant can be calculated by determining the overpotential
η = η0 at which the anodic and cathodic rate constants are equal (i.e.,
numerically determining the appropriate constant shift of the formal
electrode potential for a specified system). This constant shift effectively
accounts for differences in the total partition functions of the systems
corresponding to the anodic and cathodic processes.

This scheme can be extended to proton relay systems. For a double
proton transfer system, the proton potential energy surfaces and
corresponding proton vibrational wave functions depend on the co-
ordinates of both protons. For simplicity, each proton may be assumed
to move in one dimension, and the overlap integral Sμν is calculated
between the initial and final two-dimensional proton vibrational wave
functions. Typically the two proton coordinates are strongly coupled, so
the two-dimensional proton vibrational wave functions are not simply
products of two one-dimensional proton vibrational wave functions. In
addition, the anodic and cathodic rate constants in eqs 1 and 2 depend
on both proton donor�acceptor distances R1 and R2 (i.e., Sμν andΔ~Uμν

depend on both proton donor�acceptor distances). In addition, the
probability distribution functions Pa(R1,R2) and Pc(R1,R2) also depend
on both distances, and the integration in eqs 3 and 4 is over both
coordinates, neglecting kinetic coupling. In general, these probability
distribution functions are not simply the product of two one-dimen-
sional probability distribution functions.
B. Calculation of Heterogeneous Rate Constants. Calcula-

tion of the standard heterogeneous rate constants and corresponding
KIEs requires the proton potential energy surfaces, which provide Sμν,
Pμ, and Δ~Uμν, and the probability distribution functions for both the
anodic and cathodic processes. The solvent reorganization energy can be
calculated from dielectric continuum models. The density of states,
electronic coupling, and parameter β0 are required for the calculation of
absolute rate constants but not the KIEs or the ratio of rate constants for
related systems. In this section, we describe the computational methods
used to calculate the required input quantities for the application of this
theory to Systems I and II.
1. Proton Donor�Acceptor Motion. To describe the proton

donor�acceptor motion for single proton transfer, we express the
deviation of the proton donor�acceptor distance R from its equilibrium
value as a linear combination of normal mode coordinates. The

expansion coefficients ci are determined by projecting the normal mode
vectors onto the proton donor�acceptor axis. Evaluation of the time
correlation function of the deviation δR, assuming the classical harmonic
oscillator form, leads to an expression for an effective force constant keff
that includes contributions from all normal modes:

keff ¼ ∑
3N

i¼ 1

c2i
ki

" #�1

ð6Þ

where the summation is over all normal modes with force constants ki.
The derivation of this expression is provided in Supporting Information.
This effective force constant corresponds to the second derivative of
the electronic energy curve calculated by displacing the proton
donor�acceptor distance from equilibrium andperforming a constrained
geometry optimization, where the displaced proton donor�acceptor
distance is fixed. In other words, this effective force constant corresponds
to the harmonic probability distribution function along R for which all
other degrees of freedom respond instantaneously to changes in R.

A similar procedure can be performed for the double proton transfer
system. In this case, however, we express deviations of both proton
donor�acceptor distances R1 and R2 from their equilibrium values in
terms of the normal mode coordinates with expansion coefficients ci

(1)

and ci
(2), respectively. A single effective force constant for the double

proton transfer system can be derived by following an analogous
procedure for the time correlation function of δR1þ δR2. The resulting
effective force constant is

keff ¼ ∑
3N

i¼ 1

ðcð1Þi Þ2 þ ðcð2Þi Þ2 þ 2cð1Þi cð2Þi

ki

" #�1
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Our implementation includes only the symmetric mode, where both R1
and R2 increase or decrease concurrently by the same amount. In this
case, the effective force constant corresponds to the second derivative of
the electronic energy curve calculated by displacing both proton
donor�acceptor distances from their equilibrium distances by the same
amount and performing a constrained geometry optimization, where
both displaced proton donor�acceptor distances are fixed. In other
words, this effective force constant corresponds to the harmonic
probability distribution function for which all other degrees of freedom
respond instantaneously to changes in R1 and R2. In this treatment, we
include only the impact of the symmetric mode because we expect this
mode to exert the greatest influence on the rate constants for concerted
double proton transfer. In general, however, other modes will also
contribute and could be included. The derivations of the effective force
constant expressions, along with the expansion coefficients for Systems I
and II, are provided in Supporting Information.

2. Proton Potential Energy Surfaces. We generated the reduced and
oxidized structures to be used for calculating the anodic and cathodic rate
constants, respectively, by performing a series of constrained geometry
optimizations. For System I, we generated a series of reduced structures
obtained by displacing R from its equilibrium value in the optimized
structure by increments of 0.05 Å and performing constrained optimiza-
tions with R fixed.We performed the same procedure to obtain a series of
oxidized structures. For System II, a similar procedure was performed in
which both proton donor�acceptor distances were increased or de-
creased from their equilibrium values by the same amount. In this
approach, the reduced structure moves along an effective mode (i.e., a
linear combination of normalmodes) corresponding to the instantaneous
response of all other modes to changes in the proton donor�acceptor
distance(s) for the anodic process. The oxidized structuremoves along an
analogous effective mode for the cathodic process.

We generated the proton potentials for the anodic and cathodic rate
constants of System I using the following procedure. For the anodic rate
constant, we removed an electron from the reduced system, transferred
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the proton to the acceptor, and optimized the hydrogen position with all
other nuclei fixed for each reduced structure generated along R. The
proton coordinate axis was defined to be the line that connects the
hydrogen position in its reduced and oxidized state for each reduced
structure. To calculate the proton potentials, we performed a series of
single-point energy calculations, where the hydrogen was moved along a
grid spanning this proton coordinate axis, for both the reduced and
oxidized states. Using these proton potentials, we calculated the proton
vibrational wave functions for the reduced and oxidized states and
determined the overlaps and other quantities required to calculate the
anodic rate constant. The proton potentials and associated proton
vibrational wave functions for the cathodic rate constants were generated
in an analogous manner, using the oxidized structures generated along R.

We generated the two-dimensional proton potentials for the anodic
and cathodic rate constants of System II using a similar procedure. In this
case, however, both protons were on their donors for the reduced state,
and both protons were on their acceptors for the oxidized state. One
proton coordinate axis was defined to be the line connecting the first
hydrogen in its optimized positions on its donor and acceptor for the
reduced and oxidized states, and a second proton coordinate axis was
defined analogously for the second hydrogen. A two-dimensional grid
was defined in terms of these two axes, and a series of single-point energy
calculations, where the two hydrogen atoms were moved to sample all
points on the two-dimensional grid, was performed for both the reduced
and oxidized states. Subsequently, the two-dimensional proton vibra-
tional wave functions were calculated for the reduced and oxidized
states. This procedure was used to generate the proton potentials and
the associated wave functions of the reduced and oxidized states for both
the anodic and cathodic rate constants (i.e., for both the reduced and
oxidized structures).

We used both harmonic and anharmonic probability distributions in
our calculations. The harmonic probability distribution function was
based on the effective force constant defined in eqs 6 and 7 for the single
and double proton transfer systems, respectively. The anharmonic
probability distribution was determined by calculating the energies of
the structures generated along this effective mode (i.e., the structures
obtained from the series of constrained optimizations) and using these
energies to calculate normalized Boltzmann probabilities. The numerical
integration in eqs 3 and 4 was performed over the coordinate δR, the
deviation of the proton donor�acceptor distance from its equilibrium
value, for the single proton transfer system and over the coordinate 2δR,
the sum of equal deviations of both proton donor�acceptor distances
from their equilibrium values, for the double proton transfer system.
3. Summary of Strategy for Calculations.
• Step 1: Optimize the reduced and oxidized structures. Generate a

set of reduced structures along R for the anodic process and a set of
oxidized structures along R for the cathodic process.

• Step 2: Determine the proton coordinate axes by optimizing the
hydrogen position for the oxidized state of the reduced structures
and the reduced state of the oxidized structures.

• Step 3: Generate the proton potentials for the reduced and
oxidized states of each reduced structure. Generate the proton
potentials for the reduced and oxidized states of each oxidized
structure.

• Step 4: Calculate the proton vibrational wave functions corre-
sponding to the proton potentials generated in Step 3 and use
them to determine the overlap integrals, vibronic state energy
differences, and Boltzmann probabilities of the vibronic states.

• Step 5: Calculate the anodic rate constant using eq 1 for each R
value (based on the reduced structures). Calculate the cathodic
rate constant using eq 2 for each R value (based on the oxidized
structures).

• Step 6: Calculate the total anodic rate constant as a function of η
using the results from Step 5, together with the anodic probability

distribution function, by numerically integrating eq 3. Calculate the
total cathodic rate constant as a function ofη analogously using eq 4.

• Step 7: Determine the value of η = η0 at which the total anodic and
cathodic rate constants are equal. The resulting rate constant is the
standard rate constant.

4. Computational Details. We generated the structures and calcu-
lated the associated proton potential energy surfaces by performing
density functional theory (DFT) calculations with the B3LYP
functional47,48 and the 6-31G(d,p) basis set49�52 using Gaussian03.53

For these calculations, the tBu groups in Figure 1 were replaced by
methyl groups. As shown in Supporting Information, the proton
potentials were nearly identical using other density functionals, such
as M06-2X,54 and larger basis sets, and the methyl substitution does not
significantly impact the results. All geometry optimizations were per-
formed in the gas phase.We also performed frequency analyses in the gas
phase to determine the effective force constants along the proton
donor�acceptor coordinate(s). We generated the proton potentials
using the polarized continuum model (PCM)55,56 with the universal
force field (UFF)57 to include the effects of the acetonitrile solvent. For
the single proton transfer system, the proton potential energy curves
were calculated by moving the hydrogen along a one-dimensional grid
and performing single-point energy calculations with all other nuclei
fixed. For the double proton transfer system, the two-dimensional
proton potential energy surfaces were generated analogously, where
each hydrogen moved along a one-dimensional grid. In both cases, the
proton vibrational wave functions were calculated with the discrete
variable representation method, neglecting the kinetic coupling between
the two proton coordinates for the calculation of the two-dimensional
proton vibrational wave functions.58

5. Reorganization Energies.We calculated the solvent reorganization
energy using the procedure described in ref 59. In our implementation,
the solute complex was placed in a spherical cavity on the surface of the
electrode. The diameter of the cavity was estimated as the distance
between the two atoms furthest apart in the optimized reduced structure.
The resulting cavity radii were 5.06 and 5.18 Å for Systems I and II,
respectively. The dielectric constant of the solvent surrounding the
spherical cavity was chosen to correspond to acetonitrile. Using this
procedure, the solvent reorganization energy was calculated to be 8.5 and
8.7 kcal/mol for Systems I and II, respectively. This treatment may
slightly underestimate the solvent reorganization energy because the
molecule may not be located directly on the electrode. As shown in
Supporting Information, the KIEs and the ratio of the rate constants do
not depend strongly on the solvent reorganization energy within the
range of 8�12 kcal/mol. For consistency, we used a value of 8.5 kcal/mol
for all calculations presented in this paper. Note that the analysis in ref 35
used a solvent reorganization energy of 18.0 kcal/mol, as calculated from
a dielectric continuum model for homogeneous charge transfer
reactions.60 The solvent reorganization energy is expected to be approxi-
mately twice as large for homogeneous as for electrochemical electron
transfer reactions,61 so these two calculated values are consistent.

We also calculated the inner-sphere (i.e., solute) reorganization energy
as (Ered state

ox geom�Ered state
red geomþEox state

red geom�Eox state
ox geom)/2,where the reduced and

oxidized states correspond to the neutral and cationic molecules,
respectively. The second (fourth) term was calculated at the optimized
reduced (oxidized) geometry. The first (third) term was calculated at
the optimized oxidized (reduced) geometry with the transferring
hydrogen(s) optimized for the reduced (oxidized) state. Using this
expression, we calculated inner-sphere reorganization energies of 9.7
and 10.0 kcal/mol for Systems I and II, respectively. Thus, both the
inner- and outer-sphere reorganization energies are nearly identical for
Systems I and II. Note that the constrained geometry optimization
procedure for each proton donor�acceptor distance implicitly includes
some effects of inner-sphere reorganization, so we do not include it
explicitly in our rate constant calculations.
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In ref 35 a value for the total reorganization was obtained by fitting the
experimental temperature-dependent kinetic data to a single exponential
rate constant expression. The resulting valueswere 24.5 and 31.4 kcal/mol
for Systems I and II, respectively. These values cannot be directly
compared to the values used in our calculations because the rate constant
expressions in eqs 1 and 2 are linear combinations of exponential terms
arising from summing over the reactant and product vibronic states. For
comparison to the experimental temperature dependence, we calculated
the standard rate constant at 294, 303, and 312 K, fit an Arrhenius plot of
these three points to a line, and determined an effective reorganization
energy by equating the Arrhenius slope to λeff/4R, neglecting the
temperature dependence of the prefactor. The resulting effective
reorganization energies are 17 and 25 kcal/mol for Systems I and II,
respectively. These values are in qualitative but not quantitative agree-
ment with the values obtained from the slightly different temperature
dependence analysis in ref 35. In general, fitting the results from a
multiexponential expression to a single-exponential expression should
be viewed in only a qualitative manner. As shown in Supporting
Information, the KIEs and the ratio of the rate constants are relatively
insensitive to the reorganization energy.
6. Limitations of the Computational Strategy. The computational

strategy described above invokes numerous approximations. A signifi-
cant approximation is the treatment of the motion of each proton in one
dimension. Another significant approximation for the double proton
transfer system is the reduction of the two proton donor�acceptor
motions to a single symmetric motion. For concerted proton transfers,
the symmetric motion is expected to exert the greatest effect on the rate
constant because both proton donor�acceptor distances must decrease
for the protons to transfer simultaneously. Nevertheless, in some cases
the antisymmetric mode may need to be included. Furthermore, the
generation of the structures through constrained optimizations relies on
the assumption that the other modes respond instantaneously to the
proton donor�acceptor motion. Since the other modes correspond
mainly to minor changes in bond lengths and angles for these systems,
this assumption appears to be physically reasonable, but for certain types
of systems, additional modes may need to be treated separately. In an
alternative scheme, the reduced and oxidized structures could be
generated by following the dominant normal mode coordinate (i.e.,
the one that contributes the most to the symmetric motion of the proton
donor�acceptor distances). Thus, a variety of strategies could be
implemented. Finally, the electronic structure methods also have errors
associated with them, requiring benchmarking studies as provided in
Supporting Information.

III. RESULTS

The calculated KIEs for Systems I and II, along with the ratio
of the standard rate constants for these two systems, are
presented in Table 1. The results are provided for calculations
using both the harmonic and anharmonic probability distribution
functions along the proton donor�acceptor mode. All of the
calculated KIEs are within 0.5 of the experimental values.35 The
better agreement of the results obtained using the harmonic

probability distribution function with the experimental data may
be due to the errors associated with the DFT B3LYP energies of
structures far from equilibrium in the anharmonic treatment.
With the harmonic treatment, the calculated KIEs of 1.9 and 2.2
for Systems I and II agree well with the experimental values of 1.7
and 2.4, respectively, and the calculated ratio of the standard rate
constants, kI/kII, of 15 is in excellent agreement with the
experimental value of 16.

Previously the moderate KIEs were interpreted as indicating
that these PCET reactions are adiabatic, but our analysis indicates
that such moderate KIEs are obtained within a nonadiabatic
treatment. The qualitative agreement between theory and experi-
ment suggests that this nonadiabatic treatment adequately de-
scribes these processes. Moreover, the small magnitudes of the
overlap integrals between the ground state reduced and oxidized
proton vibrational wave functions at the equilibrium geometries
indicate that the ground state vibronic coupling (i.e., the product of
the electronic coupling and the overlap integral) is much smaller
than the thermal energy kBT for physically reasonable values of
the electronic coupling. This observation implies that a ground
state vibronically adiabatic treatment would not be suitable for
these systems. The remainder of this section focuses on analyzing
the underlying physical principles for these types of electrochemi-
cal PCET processes, particularly the proton relay system.

We examined the structures and normal modes of the reduced
and oxidized systems. The proton donor�acceptor distances for
the optimized reduced and oxidized structures for Systems I and II

Table 1. KIEs for Systems I and II and Ratio of Standard Rate
Constants, kI/kII, Obtained Experimentally35 and Calculated
with the Harmonic and Anharmonic Probability Distribution
Functions

system I KIE system II KIE kI/kII

experiment 1.7 2.4 16

harmonic 1.9 2.2 15

anharmonic 1.9 1.9 13

Table 2. Proton Donor�Acceptor Distances and Force
Constants of Dominant Normal Mode and Effective Mode
Corresponding to Proton Donor�Acceptor Motion for Op-
timized Reduced and Oxidized Structures of Systems I and II

ROO (Å) RON (Å) kdom
a (au) keff

b (au)

I - reduced � 2.71 0.0157 0.0275

I - oxidized � 2.63 0.0218 0.0336

II - reduced 2.60 2.68 0.0221 0.0156

II - oxidized 2.52 2.64 0.0257 0.0184
a Force constant of normal mode with dominant contribution to proton
donor�acceptor motion for System I and with greatest contribution to
symmetric proton donor�acceptor motion for System II. b Effective
force constant corresponding to proton donor�acceptor motion for
System I, using eq 6, and to symmetric proton donor�acceptor motion
for System II, using eq 7, including contributions from all normal modes.

Figure 2. Dependence of the proton donor�acceptor distances ROO
(red) and RON (blue) on the normal mode coordinate with the
dominant contribution to the symmetric proton motion for the opti-
mized reduced (solid line) and oxidized (dashed line) structures of
System II.
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are provided in Table 2. In all cases, the proton donor�acceptor
distances are smaller for the oxidized structure than for the
reduced structure. For System II, the O�N distance is greater
than the O�O distance in both the reduced and oxidized
structures. Table 2 also provides the force constant of the normal
mode with the dominant contribution to the proton donor�
acceptor motion for the reduced and oxidized structures. For
System II, this dominant normal mode has the greatest contribu-
tion to the symmetric proton donor�acceptor motion, where
both distances increase and decrease together. The dependence of
the proton donor�acceptor distances on this dominant normal
mode coordinate for System II is illustrated in Figure 2.

In addition, Table 2 provides the effective force constant for the
proton donor�acceptor motion(s) including contributions from
all normal modes. For System II, this effective force constant
corresponds to the symmetric proton donor�acceptor motion.
This symmetric motion is expected to be the most important
mode for this system because experiments indicate that both
protons transfer simultaneously,35 requiring the concerted de-
crease of both proton donor�acceptor distances.

As illustrated in Figures 3 and 4, the shape of the proton
potential energy surface depends strongly on the proton donor�
acceptor distance(s). Figure 3 depicts the one-dimensional proton
potential energy curves for System I. The anodic and cathodic

Figure 3. Proton potential energy curves for the reduced and oxidized states of the anodic and cathodic processes for System I. The proton potential
energy curves are depicted as functions of the proton coordinate for a series of structures generated from constrained optimizations at fixed proton
donor�acceptor distances. The fixed O�N distances are listed in the color key. The anodic and cathodic potential energy curves were calculated from
different structures corresponding to constrained optimizations of reduced and oxidized structures, respectively.

Figure 4. Diagonal slices of the proton potential energy surfaces for the reduced and oxidized states of the anodic and cathodic processes for System II.
The proton potential energy curves are depicted as functions of a proton coordinate corresponding to both transferring protons moving together along
their respective axes for a series of structures generated from constrained optimizations at fixed proton donor�acceptor distances. The fixed O�O/
O�N distances are listed in the color key for the anodic (top) and cathodic (bottom) processes. The anodic and cathodic potential energy curves were
calculated from different structures corresponding to constrained optimizations of reduced and oxidized structures, respectively.
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potential energy curves were calculated from different structures
corresponding to constrained optimizations of reduced and
oxidized structures, respectively. Figure 4 depicts a one-dimen-
sional slice along the diagonal of the two-dimensional proton
potential energy surfaces for System II. This slice corresponds to
the two protons moving simultaneously by the same amounts.
Figure 5 depicts the two-dimensional proton potential energy
surfaces for the reduced and oxidized states at the optimized
reduced geometry as well as the associated ground state proton
vibrational wave functions. Note that the proton vibrational wave
functions and all input quantities for calculating the rate con-
stants were determined from the full two-dimensional potential
energy surfaces. The diagonal slices in Figure 4 are depicted only
to illustrate the impact of the proton donor�acceptor distances
on the proton potential energy surfaces.

The proton potential energy curves for System I are asym-
metric double well potentials, where the donor well is lower in
energy for the reduced state, and the acceptor well is lower in
energy for the oxidized state. The presence of higher energy
minima on the opposite side (i.e., the acceptor side for the
reduced state and the donor side for the oxidized state) allows
excited proton vibrational wave functions to become localized on
the opposite side. For System II, additional higher energyminima
corresponding to single proton transfer may be present. For
these systems, the assumption that the overlap between the
reduced and oxidized proton vibrational wave functions de-
creases exponentially with the proton donor�acceptor distance
is not valid, and we need to use the thermally averaged procedure
described above for including the proton donor�acceptor mo-
tion. Furthermore, Figures 3 and 4 illustrate that the separation

between the two minima and the potential energy barrier
decrease significantly as the proton donor�acceptor distance
decreases. Thus, the overlap integrals between the reduced and
oxidized proton vibrational wave functions and the relative
energies among the vibronic states will depend strongly on the
proton donor�acceptor distance(s).

The dominant proton donor�acceptor distance in the PCET
process is determined by a balance between the probability
distribution function, which has a maximum at the equilibrium
distance, and the heterogeneous rate constant, which typically
increases as the proton donor�acceptor distance decreases
relative to its equilibrium value. Figure 6 depicts the probability
distribution function Pa(R) for the harmonic treatment, the rate
constant ka(η0;R) calculated from eq 1, and the product of these
two quantities (i.e., the integrand of the total anodic rate constant
ka(η0) given in eq 3) for System I. This figure illustrates that the
dominant proton donor�acceptor distance (i.e., the distance
with the greatest contribution to the total anodic rate constant) is
∼0.25 Å smaller than the equilibrium proton donor�acceptor
distance because of the dramatic increase in the rate constant as
this distance decreases. The complete set of these plots for the
anodic and cathodic processes of Systems I and II with both the
harmonic and anharmonic treatments of the probability distribu-
tion functions is provided in Supporting Information. In general,
the dominant proton donor�acceptor distance(s) are different
for the anodic and cathodic processes and for hydrogen and
deuterium transfer.

Table 3 provides an analysis of the main contributions to the
rate constants at the dominant proton donor�acceptor distance(s)
for Systems I and II with the harmonic probability distribution
function. The analogous table for the anharmonic probability
distribution function is provided in Supporting Information.
Figures 7 and 8 depict the corresponding proton potential energy
surfaces and proton vibrational wave functions. The contribution
of each pair of reduced/oxidized vibronic states is determined
predominantly by a balance between the free energy barrier and
the overlap integral between the reduced and oxidized proton
vibrational wave functions. The anodic and cathodic free energy
barriers are determined from the exponential terms of the form
exp[�ΔG†/kBT] in eqs 1 and 2, respectively. For all of the cases
considered here, the Boltzmann probability favors the ground

Figure 5. Two-dimensional proton potential energy surfaces (left
panels) and ground state hydrogen vibrational wave functions (right
panels) for the reduced (top panels) and oxidized (lower panels) states
of System II at the optimized reduced geometry. The coordinate rp

(OO)

represents the position of the hydrogen transferring between the two
oxygens, and the coordinate rp

(ON) represents the position of the hydrogen
transferring between the oxygen and nitrogen, where each hydrogen
moves along a one-dimensional axis. In each panel, the progression of
colors from the maximum to the minimum value is as follows: magenta,
blue, green, yellow, orange, and red.

Figure 6. Harmonic probability distribution function Pa(R) (blue),
heterogeneous standard rate constant ka(η0;R) (red), and the product of
these two quantities (i.e., the integrand of ka(η0)) (purple) for the
anodic process of System I. The quantities are depicted as functions of
δR, the deviation of the proton donor�acceptor distance from its
equilibrium value. The y-axis has no label because the quantities are
scaled arbitrarily so they can be viewed on the same graph. The curves
were obtained from a splining procedure for the discrete data points
separated by 0.05 Å.



8289 dx.doi.org/10.1021/ja201560v |J. Am. Chem. Soc. 2011, 133, 8282–8292

Journal of the American Chemical Society ARTICLE

reduced and oxidized vibronic states for the anodic and cathodic
processes, respectively. In other words, the initial state is typically
the ground vibronic state for these cases. In this regime, the free
energy barrier increases as the quantum number of the final state
(i.e., the oxidized vibronic state for the anodic process and the
reduced vibronic state for the cathodic process) increases.

An analysis of System I clarifies the competing factors in these
types of processes. For the anodic process with hydrogen, the
main contributions arise from the 0/0 and 0/1 pairs of reduced/
oxidized vibronic states. The 0/0 pair has a lower free energy
barrier, while the 0/1 pair has a greater overlap integral because
the excited proton vibrational wave function is more delocalized,
as illustrated in Figure 7a. For the cathodic process with hydro-
gen, the main contribution arises from the 1/0 pair of reduced/
oxidized vibronic states because the first excited proton vibra-
tional wave function for the reduced state is localized on the
acceptor side and therefore has a large overlap of nearly unity
with the ground proton vibrational wave function for the
oxidized state, as depicted in Figure 7b. Similar trends are
observed for deuterium, although the relative contributions of
the pairs of vibronic states for the anodic process are different.

System II exhibits qualitatively similar behavior, but the two-
dimensional nature of the proton vibrational wave functions
leads to the participation of higher excited vibronic states. In
particular, the overlap between two-dimensional proton vibra-
tional wave functions localized on opposite sides is typically
smaller than the overlap between the one-dimensional counter-
parts, thereby favoring higher excited vibrational states with
delocalized character for the double proton transfer system.
The smaller overlap integral for two-dimensional wave functions
can be understood qualitatively in the context of a pair of shifted
two-dimensional harmonic oscillator potentials with no cou-
pling between the two coordinates. Since the two-dimensional
harmonic oscillator wave functions are simply products of two

one-dimensional harmonic oscillator wave functions, the overlap
integral between the two-dimensional ground state wave func-
tions is the square of the overlap integral between the corre-
sponding one-dimensional ground state wave functions. Thus,

Table 3. Analysis of Main Contributions to Anodic and Cathodic Standard Rate Constants for Dominant Proton Donor�Acceptor
Distance(s) for Systems I and II with Hydrogen and Deuteriuma

μ/ν ΔUμν (kcal/mol) ΔGμν
† (kcal/mol) Sμν

2 % contribution

I - anodic - Hb 0/0 0.0 1.00 0.043 62

0/1 3.71 2.68 0.46 36

I - cathodic - Hc 1/0 �1.59 4.81 0.89 99

I - anodic - Dd 0/0 0.0 0.89 0.0041 14

0/1 3.07 2.16 0.15 54

0/2 5.03 3.26 0.47 27

I - cathodic - De 1/0 �1.52 5.02 0.93 100

II - anodic - Hf 0/0 0.0 0.86 0.0002 10

0/1 4.95 3.15 0.018 23

0/3 7.39 4.82 0.59 53

II - cathodic - Hg 1/0 �2.55 5.89 0.35 80

2/0 �3.84 7.01 0.46 19

II - anodic - Dh 0/5 8.05 5.37 0.64 77

II - cathodic - Di 1/0 �4.00 7.10 0.84 98
a μ and ν correspond to the reduced and oxidized vibronic states, respectively; ΔUμν is the energy difference between oxidized vibronic state ν and
reduced vibronic state μ; ΔGμν

† is the free energy barrier for the anodic or cathodic rate constant given by eqs 1 or 2, respectively, for ε= 0; Sμν is the
overlap integral between reduced proton vibrational wave function μ and oxidized proton vibrational wave function ν; and % contribution is the percentage
contribution to the overall standard rate constant, where contributions less than 10% are excluded. All results in this table were obtained with the harmonic
probability distribution function; analogous results for the anharmonic probability distribution function are given in Table S3 of Supporting Information.
b RON= 2.46Å,η0 = 0.1156V.

c RON= 2.66 Å,η0 = 0.1156V.
d RON= 2.46 Å,η0 = 0.1305 V.

e RON= 2.71Å,η0 = 0.1305V.
f ROO= 2.45 Å,RON= 2.53Å,η0 =

0.1340 V. g ROO = 2.47 Å, RON = 2.59 Å, η0 = 0.1340 V. h ROO = 2.45 Å, RON = 2.53 Å, η0 = 0.1317 V. i ROO = 2.52 Å, RON = 2.64 Å, η0 = 0.1317 V.

Figure 7. Proton potential energy curves and associated hydrogen
vibrational wave functions for the reduced (blue) and oxidized (red)
states of System I. These data are depicted for the main contributing
pairs of reduced/oxidized vibronic states at the dominant proton
donor�acceptor distance, as determined with the harmonic treatment
of the probability distribution function: (a) the 0/0 and 0/1 pairs of
reduced/oxidized vibronic states at RON = 2.46 Å for the anodic process
and (b) the 1/0 pair of reduced/oxidized vibronic states at RON = 2.66 Å
for the cathodic process.
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the two-dimensional overlap integral will be smaller than the
corresponding one-dimensional overlap integral. As illustrated
in Figure 5, the two proton coordinates are strongly coupled
and hence are not separable in System II, but the qualitative
trends concerning the overlap integrals for the one- and two-
dimensional ground state proton vibrational wave functions are

still observed. For example, at the optimized reduced geometries,
S00
2 (I-H) = 7.4 � 10�7, S00

2 (I-D) = 3.1 � 10�10, S00
2 (II-H) =

3.0 � 10�12, and S00
2 (II-D) = 1.1 � 10�18 for Systems I and II

with H and D.
These values of the overlap integrals for the optimized reduced

geometries of Systems I and II also confirm the importance of
including excited vibronic states and proton donor�acceptor
motion. If the excited vibronic states and proton donor�accep-
tor motion were not included in the theoretical treatment, and all
parameters except the overlap integrals were assumed to be the
same for Systems I and II and for hydrogen and deuterium, then
the ratio of the rate constants could be estimated as the ratio of
the squares of the overlap integrals between the ground reduced
and oxidized proton vibrational wave functions.31 Based on the
values of the overlap integrals given above, the KIE for System I
would be ∼103, the KIE for System II would be ∼106, and the
ratio of the standard rate constants, kI/kII, for hydrogen would be
∼105. These estimates are qualitatively incorrect, emphasizing
the importance of including excited vibronic states and the
proton donor�acceptor motion, thereby increasing the overlap
integrals of the dominant contributions to the overall rate
constant. Larger overlap integrals of the dominant contributions
typically lead to more moderate KIEs31 and allow proton relay
systems to have similar (or even larger) rate constants compared
to those of related single proton transfer systems.

Figure 8 depicts the two-dimensional proton potential energy
surfaces and associated hydrogen vibrational wave functions for
the dominant contributions to the anodic and cathodic processes
of System II. Note that each two-dimensional hydrogen vibra-
tional wave function is labeled with a single quantum number. In
Figure 8a, the 0/3 pair of reduced/oxidized vibronic states, with
an overlap integral of 0.59, is depicted for the anodic process. In
Figure 8b, the 1/0 pair of reduced/oxidized vibronic states, with
an overlap integral of 0.35, is depicted for the cathodic process.
For comparison, recall that S00

2 = 3.0� 10�12 for the ground state
hydrogen vibrational wave functions at the optimized reduced
geometry of System II. From a visual perspective, the overlaps
between the reduced and oxidized proton vibrational wave
functions depicted in Figure 8 are substantially greater than the
overlap between the ground state proton vibrational wave func-
tions depicted in Figure 5 for the optimized reduced geometry.

Analysis of the data provided in Table 3 enables a comparison
between Systems I and II. For the anodic process with hydrogen,
S00
2 in System I is approximately the same magnitude as S01

2 in
System II, and S01

2 in System I is approximately the same
magnitude as S03

2 in System II. For the anodic process with
deuterium, S02

2 in System I is approximately the same magni-
tude as S05

2 in System II. In all of these cases, System II must
access higher excited vibronic states to achieve similar overlap
integrals. Qualitatively, the cathodic process for System II is
similar to that for System I, where the 1/0 pair of reduced/
oxidized vibronic states is the dominant contributor for both
hydrogen and deuterium because of localization of the first
excited two-dimensional proton vibrational wave function for
the reduced state on the acceptor side, as depicted in Figure 8b.
For the cathodic process with hydrogen, S10

2 in System I is
approximately twice the magnitude of both S10

2 and S20
2 in

System II. For the cathodic process with deuterium, the
magnitude of S10

2 is slightly greater for System I than for
System II. As for the anodic process, System II accesses
vibronic states with greater free energy barriers, leading to a
lower rate constant for System II than for System I.

Figure 8. Two-dimensional proton potential energy surfaces (left
panels) and associated hydrogen vibrational wave functions (right
panels) for the reduced (top panels) and oxidized (lower panels) states
of System II. These data are depicted for the main contributing pairs of
reduced/oxidized vibronic states at the dominant proton donor�accep-
tor distances, as determined with the harmonic treatment of the
probability distribution function: (a) the 0/3 pair of reduced/oxidized
vibronic states at ROO = 2.45 Å and RON = 2.53 Å for the anodic process
and (b) the 1/0 pair of reduced/oxidized vibronic states at ROO = 2.47 Å
andRON= 2.59 Å for the cathodic process. In each panel, the progression
of colors from the maximum to the minimum value is as follows:
magenta, blue, green, yellow, orange, and red.
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IV. CONCLUSIONS

In this paper, we identified key physical characteristics of
electrochemical PCET reactions involving proton relays and
devised a theoretical treatment of these processes. We found
that the coordinates of the transferring protons are strongly
coupled and are not separable, thereby requiring the calculation
of multidimensional proton vibrational wave functions. In addi-
tion, the proton donor�acceptor distances strongly impact the
proton potential energy surfaces and the associated proton
vibrational wave functions, necessitating the inclusion of the
proton donor�acceptor motion for each proton transfer reac-
tion. For concerted proton transfers, often the multiple proton
donor�acceptor modes can be reduced to a single effective
proton donor�acceptor mode corresponding to a symmetric
motion in which all proton donor�acceptor distances
decrease or increase concurrently. The excited electron�
proton vibronic states play an important role in these types of
processes, and the excited proton vibrational wave functions
are typically delocalized or localized in a higher energy local
minimum potential energy well. Moreover, the dominant
proton donor�acceptor distances and contributing pairs of
reduced/oxidized vibronic states may differ substantially for
the anodic and cathodic processes. Both the anodic and cathodic
processes must be studied to determine the standard hetero-
geneous rate constant.

These calculations assist in the interpretation of the experi-
mental data. In ref 35 these systems were interpreted in the
context of adiabatic electron transfer, and the smaller standard
rate constant for the double proton transfer system than the
single proton transfer system was attributed to a larger inner-
sphere reorganization energy for the double proton transfer
system.36 The justification for applying the adiabatic electron
transfer treatment to these systems was based on the relatively
moderate KIEs. Our calculations indicate that moderate KIEs of
1.5�3.0 may arise within a nonadiabatic treatment because of
significant contributions from excited electron�proton vibronic
states associated with delocalized proton vibrational wave func-
tions. According to our calculations, the smaller standard rate
constant for the double proton transfer system is due to the
smaller overlap integral between the ground state reduced and
oxidized proton vibrational wave functions, leading to greater
participation of excited vibronic states associated with higher free
energy barriers. The decrease in the proton donor�acceptor
distances due to thermal fluctuations and the contributions from
excited electron�proton vibronic states enable this double
proton transfer system to be only slightly slower than the related
single proton transfer system.

These two theoretical analyses of the experimental data
provide predictions that can be tested experimentally. The
theoretical treatment in ref 35 predicts that the PCET rate
constant of System II will be increased by maximizing
the rigidity of the structure (i.e., minimizing the movements of
the heavy atoms). The theoretical treatment described in the
present paper predicts that the PCET rate constant will be
increased by maximizing the dominant proton vibrational
wave function overlap integrals. These overlap integrals could
be enhanced by modifying the molecule in a manner that
decreases the equilibrium proton donor�acceptor distances or
alters the molecular thermal motions to facilitate the concurrent
decrease of these distances. Experimentally testing these types of
predictions is challenging, however, because of the complexity of

PCET processes and the difficulty associated with altering only a
single property of an experimental system. Recent electroche-
mical experiments provide data on molecules differing
from System II by the substituent at the alcohol functional
carbon and methyl groups on the pyridine.62 Application of
the present theoretical approach to these systems may provide
additional insight into the balance between the hydrogen-bond
accepting and donating characteristics of the central oxygen
atom.

Understanding the fundamental physical principles under-
lying these types of model systems may assist in the design
of catalysts coupling proton relays to electron transfer in
electrochemical fuel cells, artificial photosynthetic systems, and
solar cells. If the proton donor�acceptor distances were
fixed at their equilibrium values, and only ground vibronic
states contributed to the overall process, then proton relays
would be expected to diminish the efficiency of PCET systems
because of the smaller overlap integral between the reduced
and oxidized proton vibrational wave functions. The PCET rate
constant, however, is determined by a complex interplay
between the overlap integral and the free energy barrier for all
relevant pairs of vibronic states. In turn, these quantities and the
relative contributions of the vibronic states are strongly influ-
enced by the proton donor�acceptor distances and associated
frequencies as well as the reorganization energies. The
complexity of these processes prevents us from identifying a
single design principle guaranteed to enhance efficiency. The
general theoretical principles emerging from these types of
studies, however, along with calculations focused on specific
experimentally accessible systems, may guide the development of
more efficient proton relay systems for energy conversion
processes.
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